
Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 4, Issue 1; January-March, 2017, pp. 20-23
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/Publication.html

Component based Software Development Lifecycle
Goutam Bhatta

G.L Choudhury College, Barpeta Road, Assam, India
E-mail: bhatta_goutam@yahoo.com

Abstract—Component based software development has become a
major approach in recent years. Component-based Software
Engineering (CBSE) deals with the entire life cycle of component
based software products. It has been focusing on the technologies
which are related to the implementation and design of the software
components. Component based Software Engineering approach
requires certain changes in life cycle of the development processes.
Therefore, a few CBSE works either research field or practical field
they are also deals with the Component based software development.
This paper describes the differences between the component based
and non-component based processes. Therefore some extents
summarize the knowledge of areas to be pointed in this report.

Keywords: Component based software, Component based Life cycle,
Component Development process.

1. INTRODUCTION

The Component based software development approach has
shown considerable successes in many application domains in
last few years. Distributed system and web-based systems like
desktop and graphical applications are typical examples of
domains in which component based software development
approach has been very successful implemented. In these
domains the general purpose component technologies, like
EJB, J2EE, COM, .NET etc. are used.

However a little knowledge about the development processes
which is specific for the component based software
development. In this paper shows the characteristics of
component based life cycle, the reasons for this component
based development and the differences between the
component based and non-component based development
process.

2. COMPONENT-BASED LIFE CYCLE PROCESS
MODELS

Component based software engineering (CBSE) shows the
challenges similar to those encountered elsewhere in software
engineering. Many of the tools and principles of software
engineering used in some other system, which will be used the
similar way in CBSE. However one main difference of CBSE
which specifically focuses the questions related to
components. In that sense it distinguishes the component

based development from that system development with
component.

3. BUILDING SYSTEMS FROM THE COMPONENTS

The main idea of the component based approach is taken from
building systems from pre-existing components. It has several
consequences for the system lifecycle. At First step of the
development processes, the component based systems are
separated from the development processes in which the
components should already been developed and possibly used
in the other products when the system development process
begins. Secondly a new separate process will appear that is
“Finding and evaluating the components”. Thirdly the
activities in the processes will be different from the activities
in non-component-based approach for the system development
in which the emphasis will be finding the proper components
and verifying them for the component development and design
for reuse will be the main concern.

There is a difference in between the requirement and business
ideas in these three cases and different approaches are
necessary. The components are built to be used and reused in
many applications, some possibly not yet existing, in some
possibly unforeseen way. In system development with
components is focused on the identification of reusable
entities and relationship between them. Beginning from the
system requirements and the availability of the components
already exist in the system. Implementation effort in the
system development will no longer be necessary but the effort
required in dealing with components, locating them, selecting
those most appropriate, testing them, etc. will increase the
component life cycle.

In reality the processes are already separate as many
components, which are developed by third parties
independently in the system development. Even components
are being developed internally in an organization, which uses
same components often treated as separate entities developed
separately.

I have shown the differences in more detail as follows. Fig. 1
show a V development model adapted to component-based
approach.

Component based Software Development Lifecycle 21

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 4, Issue 1; January-March, 2017

 V model is widely used in many organizations typically large
organization building complex for long life of the products
such as cars or robots. In this V model the process starts in a
usual way by requirements specification followed by system
specification. In the non-component based software
development approach the process would continue with the
unit design, implementation and testing. Instead of performing
these activities that are efforts and time consuming, developers
simply select appropriate components and integrate them in
the system. Two problems appear in V development model
which break the simplicity as follows: (i) It is not necessary to
select any component and (ii) The selected component only
partially fits to the overall design of the product. The first fact
shows that we must have a process for finding components.
This process includes the activities for finding the components
and then the component evaluation. The second fact indicates
the need of component adoption and testing before release.
Fig. 1 describes the V development process as shown below:

Fig. 1: V development process for CBD

In Fig. 1 shows a simplified and an idealized V development
process. It is a supposition that the component selected and
used sufficiently close to the units identified in the design
process, so that the adaptation process significantly less efforts
then the units’ implementation. Further it does not deliberate
what happens in the maintenance process; if a system
malfunctions due to a problem occurred in a component or
incompatibilities of the components. It indicates that the
component based approach is not only limited to the
development process but also the entire life cycle of the
development. Let us take a look at Fig. 2 in which the
activities at different phases of the development process
shown in detail.

4. REQUIREMENT ANALYSIS AND
SPECIFICATION

In this phase one of the most important activities is to analyse
the possibility of realizing the solutions that will be meet these

requirements. In a component based approach, It is necessary
to analyse whether the requirements can be fulfilled or not by
available components. This means that the requirements
engineers must be aware of components which can be used.
Some appropriate components can always be found but there
is a risk that the new components have to be implemented. To
keep component based software development approach one
possibility is to negotiate the requirements and modify
existing components for reuse.

5. SYSTEM SPECIFICATION AND SOFTWARE
DESIGN

System specification and design is strongly related to the
availability of the components. The potential components are
complying with a particular component based model.
Component based model requires a particular architectural
framework and the supported applications are use in this
framework impact on architectural decisions. For example if
the component based model requires client server architecture,
it is obvious that the application will use the same. This will
put the limitations on the system design. Therefore other
properties of components can have a direct influence on the
design. So the design process is tightly connected to the
availability of the components.

6. IMPLEMENTATION AND UNIT TESTING

When building component based system using glue code an
ideal case is to build an application by direct integration of
components that is directly connected with components. In
programming the “glue code” is a secure code that specifies
the connection. In practice the role of the glue code will also
include adaptation of the components and even
implementation of new functions. In an ideal case the
components themselves built and tested. However testing of
the components in isolation is not sufficient. The design units
will be implemented as assemblies of several components with
a glue code. These assemblies must be tested separately and
incorrect components themselves are correct.

7. SYSTEM INTEGRATION

The system integration process includes integration of
standard infrastructure components that build a component
framework and a application components. The integration of a
particular component into a system is called a component
deployment. In difference to the entire system integration,
component deployment is a mechanism for integration of
particular components which includes download and
registering of the component.

8. SYSTEM VERIFICATION AND VALIDATION

In system verification and validation, standard test and
verification techniques are used. The specific problem for
component based approach is location error especially when

Goutam Bhatta

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 4, Issue 1; January-March, 2017

22

the components are of black box type and delivered from
different vendors. Typically a component can exhibit an error
but the cause of the malfunction lies in another component.
Some interfaces play an important role in checking the proper
input and output from components. These interfaces enable a
specification of input and output and checking the correctness
of data.

9. OPERATION SUPPORT AND MAINTENANCE

In operation support and maintenance process a new or
modified component is deployed into the system and it may be
necessary to change the glue code. In some cases an existing
component will be modified or a new version of the same
component will be integrated into the system. But new
problems may be created by incompatibility between
components or by broken dependencies. For this reason the
system must be verified either formally or by simulation or by
testing. In Fig. 2 describe details in V development process for
CBD as shown below:

Fig. 2: A Detailed V development process for CBD

In comparison with a non-component based approach, a
component based development process there are significantly
less efforts in programming but the verification and testing
require considerably more efforts.

The verification activity repeats in several phases with slightly
different goals which are mention bellow:

 Verifying the component in an isolation,

 Verifying the systems when the component has been
deployed into the system,

 Verifying the components in an assembly.

10. BUILDING REUSABLE COMPONENTS

Building components can follow an arbitrary development
process model. However, any model will require certain
modification to achieve the goals in addition to the demands
on the component functionality a component is built to be
reused. Reusability includes generality and flexibility. In

which requirements may significantly change the component
characteristics. For example there might be a requirement for
the portability. This requirement could imply a specific
implementation solution like choice of programming
language, implementation of an intermediate level of services
and programming style etc. The generality requirements
include more functionality, design, development efforts with
the more qualified developers. The component based
development will require more efforts for testing and
specification of the components. The components should be
tested not only in isolation but also in different configurations.
Finally the documentation with product delivery will require
more efforts, since the extended documentation is very
important for increasing the understanding of the component.
An example of extended component specification can be
found in the “Robocop” component model. Therefore
component is specified by a row of modules: functional
model, executable model, simulation model and resource
model etc. Each model includes its corresponding
documentation.

11. CONCLUSION

A component based software development approach cannot be
fully utilized if the development processes are not adopted
according to basic principles of CBSE. This approach aims for
increase the reusability of existing components, decrease the
implementations effort and increase the system verification
effort. This may requires adjustments of the development
processes.

This report pointed out the difficulties to achieve a complete
separation of the development processes of systems from the
components as well as the need for a project which puts a
more important role on the architectural issues and
components verification.

REFERENCES

[1] Technical Concepts of Component-Based Software Engineering,
Vol -II,CMU/SEI-2000-TR-008.

[2] Szyperski C, Gruntz D, and Murer S, ― Component Software:
Beyond Object-Oriented Programming, Addison Wesley, second
edition, 2002.

[3] Bass L., Clements P., and Kazman R., Software Architecture in
Practice, Addison-Wesley, 1998.

[4] Garlan D., Allen R., and Ockerbloom J., Architectural
Mismatch: Why Reuse is so hard, IEEE Software, Vo.12, issue
6, 1995.

[5] Morisio M., Seaman C. B., Parra A. T., Basil V. R., Kraft S. E.,
and Condon S. E., "Investigating and Improving a COTS-Based
Software Development Process", In Proceedings , 22nd ICSE,
ACM Press, 2000.

[6] Broy M, Deimel A, Henn J, Koskimies K, Plasil F, Pomberger
G, Pree W, Stal M, and Szyperski C, What Characterizes a
Software Component?ǁ Software—Concepts and Tools, vol. 19,
no. 1, pp. 49-56, 1998.

Component based Software Development Lifecycle 23

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 4, Issue 1; January-March, 2017

[7] Sommerville I, Software Engineeringǁ, Chapter 19, 7th edition,
2004.

[8] Lau K K and Wang Z, A Survey of Software Component
Models, second ed., School of Computer Science, Univ. of
Manchester.

[9] Ivica Crnkovic and Magnus Larsson (editors), Building Reliable
Component-Based Software Systems, Artech House Publishers,
ISBN 1-58053-327-2, 2003.

[10] ITEA project, ROBOCOP- Robust Open Component Based
Software Architecture for Configurable Devices Project
http://www.hitech-projects.com/euprojects/robocop.

[11] http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp38.pdf, May
2006.

[12] Allan R , Garlen D, A formal basis of architectural connection,
ACM transactions on Software Engineering and Methodology,
6(3) 213-249, 1997.

